1,523 research outputs found

    Environmental signal integration by a modular AND gate

    Get PDF
    Microorganisms use genetic circuits to integrate environmental information. We have constructed a synthetic AND gate in the bacterium Escherichia coli that integrates information from two promoters as inputs and activates a promoter output only when both input promoters are transcriptionally active. The integration occurs via an interaction between an mRNA and tRNA. The first promoter controls the transcription of a T7 RNA polymerase gene with two internal amber stop codons blocking translation. The second promoter controls the amber suppressor tRNA supD. When both components are transcribed, T7 RNA polymerase is synthesized and this in turn activates a T7 promoter. Because inputs and outputs are promoters, the design is modular; that is, it can be reconnected to integrate different input signals and the output can be used to drive different cellular responses. We demonstrate this modularity by wiring the gate to integrate natural promoters (responding to Mg2+ and AI-1) and using it to implement a phenotypic output (invasion of mammalian cells). A mathematical model of the transfer function is derived and parameterized using experimental data

    Genetic modifiers of Duchenne muscular dystrophy and dilated cardiomyopathy

    Get PDF
    OBJECTIVE: Dilated cardiomyopathy (DCM) is a major complication and leading cause of death in Duchenne muscular dystrophy (DMD). DCM onset is variable, suggesting modifier effects of genetic or environmental factors. We aimed to determine if polymorphisms previously associated with age at loss of independent ambulation (LoA) in DMD (rs28357094 in the SPP1 promoter, rs10880 and the VTTT/IAAM haplotype in LTBP4) also modify DCM onset. METHODS: A multicentric cohort of 178 DMD patients was genotyped by TaqMan assays. We performed a time-to-event analysis of DCM onset, with age as time variable, and finding of left ventricular ejection fraction 70 mL/m2 as event (confirmed by a previous normal exam < 12 months prior); DCM-free patients were censored at the age of last echocardiographic follow-up. RESULTS: Patients were followed up to an average age of 15.9 \ub1 6.7 years. Seventy-one/178 patients developed DCM, and median age at onset was 20.0 years. Glucocorticoid corticosteroid treatment (n = 88 untreated; n = 75 treated; n = 15 unknown) did not have a significant independent effect on DCM onset. Cardiological medications were not administered before DCM onset in this population. We observed trends towards a protective effect of the dominant G allele at SPP1 rs28357094 and recessive T allele at LTBP4 rs10880, which was statistically significant in steroid-treated patients for LTBP4 rs10880 (< 50% T/T patients developing DCM during follow-up [n = 13]; median DCM onset 17.6 years for C/C-C/T, log-rank p = 0.027). CONCLUSIONS: We report a putative protective effect of DMD genetic modifiers on the development of cardiac complications, that might aid in risk stratification if confirmed in independent cohorts

    Novel mutation identification and copy number variant detection via exome sequencing in congenital muscular dystrophy.

    Get PDF
    BACKGROUND: Congenital muscular dystrophy type 1A (MDC1A), also termed merosin-deficient congenital muscular dystrophy (CMD), is a severe form of CMD caused by mutations in the laminin α2 gene (LAMA2). Of the more than 300 likely pathogenic variants found in the Leiden Open Variant Database, the majority are truncating mutations leading to complete LAMA2 loss of function, but multiple copy number variants (CNVs) have also been reported with variable frequency. METHODS: We collected a cohort of individuals diagnosed with likely MDC1A and sought to identify both single nucleotide variants and small and larger CNVs via exome sequencing by extending the analysis of sequencing data to detect splicing changes and CNVs. RESULTS: Standard exome analysis identified multiple novel LAMA2 variants in our cohort, but only four cases carried biallelic variants. Since likely truncating LAMA2 variants are often found in heterozygosity without a second allele, we performed additional splicing and CNV analysis on exome data and identified one splice change outside of the canonical sequences and three CNVs, in the remaining four cases. CONCLUSIONS: Our findings support the expectation that a portion of MDC1A cases may be caused by at least one CNV allele and show how these changes can be effectively identified by additional analysis of existing exome data

    Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs) targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts.</p> <p>Methods</p> <p>Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed.</p> <p>Results</p> <p>For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62), by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons.</p> <p>Conclusion</p> <p>The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.</p

    Immunofluorometric quantitation and histochemical localisation of kallikrein 6 protein in ovarian cancer tissue: a new independent unfavourable prognostic biomarker

    Get PDF
    Human kallikrein 6 protein is a newly discovered human kallikrein. We determined the amount of human kallikrein 6 in extracts of 182 ovarian tumours and correlated specific activity (ng hK6 mg−1 total protein) with clinicopathological variables documented at the time of surgical excision and with outcome (progression free survival, overall survival) monitored over a median interval of 62 months. Thirty per cent of the tumours were positive for human kallikrein 6 (>35 ng hK6 mg−1 total protein). Human kallikrein 6-specific immunohistochemical staining of four ovarian tissues that included benign, borderline and malignant lesions indicated a cytoplasmic location of human kallikrein 6 in tumour cells of epithelial origin, although the intensity of staining was variable. Tumour human kallikrein 6 (ng hK6 mg−1 total protein) was higher in late stage disease, serous histotype, residual tumour >1 cm and suboptimal debulking (>1 cm) (P<0.05). Univariate analysis revealed that patients with tumour human kallikrein 6 positive specific activity were more likely to suffer progressive disease and to die (hazard ratio 1.71 (P=0.015) and 1.88 (P=0.022), respectively). Survival curves demonstrated the same (P=0.013 and 0.019, respectively). Multivariate analysis revealed that human kallikrein 6 positivity was retained as an independent prognostic variable in several subgroups of patients, namely those with (low) grade I and II tumours (hazard ratio progression free survival 4.3 (P=0.027) and overall survival 4.1 (P=0.023)) and those with optimal debulking (hazard ratio progression free survival 3.8 (P=0.019) and overall survival 5.6 (P=0.011)). We conclude that tumour kallikrein 6 protein levels have utility as an independent adverse prognostic marker in a subgroup of ovarian cancer patients with otherwise apparently good prognosis

    Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs

    Get PDF
    Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog

    Parametric study of EEG sensitivity to phase noise during face processing

    Get PDF
    &lt;b&gt;Background: &lt;/b&gt; The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model. &lt;b&gt;Results: &lt;/b&gt; Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces. &lt;b&gt;Conclusion: &lt;/b&gt; Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses

    Antisense PMO cocktails effectively skip dystrophin exons 45-55 in myotubes transdifferentiated from DMD patient fibroblasts

    Get PDF
    Antisense-mediated exon skipping has made significant progress as a therapeutic platform in recent years, especially in the case of Duchenne muscular dystrophy (DMD). Despite FDA approval of eteplirsen-the first-ever antisense drug clinically marketed for DMD-exon skipping therapy still faces the significant hurdles of limited applicability and unknown truncated protein function. In-frame exon skipping of dystrophin exons 45-55 represents a significant approach to treating DMD, as a large proportion of patients harbor mutations within this "hotspot" region. Additionally, patients harboring dystrophin exons 45-55 deletion mutations are reported to have exceptionally mild to asymptomatic phenotypes. Here, we demonstrate that a cocktail of phosphorodiamidate morpholino oligomers can effectively skip dystrophin exons 45-55 in vitro in myotubes transdifferentiated from DMD patient fibroblast cells. This is the first report of substantive exons 45-55 skipping in DMD patient cells. These findings help validate the use of transdifferentiated patient fibroblast cells as a suitable cell model for dystrophin exon skipping assays and further emphasize the feasibility of dystrophin exons 45-55 skipping in patients
    corecore